Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Sickle cell disease (SCD) is an important cause of under-five mortality. Tanzania is the 5th country in the world with the highest births prevalence of SCD individuals. Significant advances in the neonatal diagnosis of SCD using rapid point-of-care testing have been made. However genetic confirmation is still required for positive cases, in uncertain cases, in multiply transfused patients, to resolve compound heterozygosity (Hb S/ β0 Thal or Hb S/ β+ thal) not uncommon in the coastal regions of East Africa and increasingly also for pre-marital counselling and potentially for future curative approaches such as gene therapy. The currently available DNA tests are prohibitively expensive. Here, we describe an easy-to-use, affordable and accurate β-globin sequencing approach that can be easily integrated within existing NBS for SCD and other haemoglobinopathies especially in Low- and Middle-income Countries. AIM: To evaluate an affordable DNA technology for the diagnosis of Sickle cell disease and other haemoglobinopathies in a resource-limited setting. METHODS: Laboratory-based validation study was conducted by Muhimbili University of Health and Allied Sciences and the University of Oxford involving sequencing of the entire β -haemoglobin locus using the Oxford Nanopore MinION platform. A total number of 36 Dried blood spots and whole blood samples were subjected to conventional protein-based methods (isoelectric focusing, HPLC), and/or sequenced by the Sanger method as comparators. RESULTS: Sequencing results for SCD using the MinION were 100% concordant with those from the Sanger method. In addition, the long-read DNA sequencing method enabled the resolution of cases with unusual phenotypes which make up 1% of all children in Tanzania. The cost is £11/ sample for consumables, which is cheaper compared to other sequencing platforms. CONCLUSIONS: This is the first report of a comprehensive single DNA assay as a definitive diagnostic test for SCD and other haemoglobinopathies. The test is fast, precise, accurate and affordable.

Original publication

DOI

10.1186/s12864-021-08220-x

Type

Journal article

Journal

BMC Genomics

Publication Date

16/12/2021

Volume

22

Keywords

Comprehensive care, DNA sequencing, Haemoglobinopathies, Nanopore, Newborn screening, Sickle cell disease, Anemia, Sickle Cell, DNA, Diagnostic Tests, Routine, Hemoglobinopathies, Humans, Tanzania