Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Interrogating the tumor genome in its entirety by whole-genome sequencing (WGS) offers an unprecedented insight into the biology and pathogenesis of cancer, with potential impact on diagnostics, prognostication and therapy selection. WGS is able to detect sequence as well as structural variants and thereby combines central domains of cytogenetics and molecular genetics. Given the potential of WGS in directing targeted therapeutics and clinical decision-making, we envision a gradual transition of the method from research to clinical routine. This review is one out of three within this issue aimed at facilitating this effort, by discussing in-depth analytical validation, clinical interpretation and clinical utility of WGS. The review highlights the requirements for implementing, validating and maintaining a clinical WGS pipeline to obtain high-quality patient-specific data in accordance with the local regulatory landscape. Every step of the WGS pipeline, which includes DNA extraction, library preparation, sequencing, bioinformatics analysis, and data storage, is considered with respect to its logistics, necessities, potential pitfalls, and the required quality management. WGS is likely to drive clinical diagnostics and patient care forward, if requirements and challenges of the technique are recognized and met.

Original publication

DOI

10.1016/j.semcancer.2021.06.009

Type

Journal article

Journal

Semin Cancer Biol

Publication Date

10/06/2021

Keywords

Clinical WGS, Precision oncology, WGS in routine diagnostics, analytical validation, whole-genome sequencing